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FOREWORD

This report covers the second phase of the work carried out under Contract AF 61(052) 339,

The first phase was reported in the following Technical Notes and Publications: ~

TN 1

TN 2

TN 4

(AFOSR TN 60— 711), November 1960, *‘Buckling of Circular Conical Shells Under Axisym-
metric External Pressure’’ (Published in Journal of Mechanical Engineering Science, Vol. 3,

No. 4, December 19G1),

(AFOSR TN 60 - 860), December 1960, **The Effect of Axial Constraint on the Instability of
Thin Conical Shells under External Pressure’ (Published in Journal of Applied Mechanics,
Vol. 29, No. 1, March 1962).

July 1961, ““‘Buckling of Thin Circular Conical Shells Subjected to Axisymmetrical Tempera-

ture Distributions and Extemnal Pressure’’.

September 1961, ‘‘The Effect of Axial Constraint on the Instability of Thin Circular Cylindri-
cal Shells under Uniform Axial Compression’’ (Published in International Journal of Mechani-

cal Sciences, Vol. 4, No. 2, 1962).

December 1961, **A Donnell type Theory for Bending and Buckling of Orthotropic Conical
Shells"'.

**Experimental Investigations of the Instability of Conical Shells under External Pressure’,

Bulletin of the Research Council of lsrael, Vol. 11C, No. 1, April 1962,
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I

S U M M A R Y

A method developed previously for the analysis of the instability of thin conical shells under ex-
ternal pressure is now extended to buckling under torsion and combined torsion and external or internal
pressure as well as axisymmetric temperature distributions, The method is based on solution of modi-
fied Donnell type stability equations, in the presence of slightly relaxed boundary conditions for the u
and v displacements. Two formulations of the solution for torsion and combined loadings are given
and compared. Typical examples are calculated and compared with results obtained by Seide, and in-
teraction curves for combined torsion and external pressure loading are given. For conical shells of
small and medium taper ratio, the interaction curves may be approximated by the semi-empirical curve
of Crate, Batdorf and Baab for cylindrical shells, but for large taper ratio different curves are obtained.

The results of a continuation of an experimental program on the instability of thin truncated coni-
cal shells under uniform external pressure, carried out at the Department of Aeronautical Engineering,
are presented and discussed. The tests of 33 steel, Alclad, and aluminum alloy conical shells of vary-
ing geometries are desgribed, and the results are compared and correlated with other experimental in-
vestigations and with theory. The test results reverify the theories of Singer and of Seide. The buck-
ling and postbuckling behaviour and the effect of initial out-of-roundness are discussed.

The results of another experimental program on the instability of thin truncated conical shells in
torsion and under the combined loading of external pressure and torsion are given, and compared with
the theories of Section 1. Good agreement was obtained between theory and experiments,

The method of analysis of Section 1 is adapted to analyse the asymmetric buckling of thin coni-
cal shells under uniform axial compression. A linear theory is used and typical cases are computed and

compared with an axisymmetric analysis.
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non-dimensional axial co-ordinate = x*a,
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to that of the top.
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geometrical shell parameter = (1 -v2)* (1/p )
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cone angle,

(n/lg, x,) (see Eq. (1.19)).

(1 —v)/2 (see Eq. (1.20)).

axial compression parameter = (P/E) (K‘/erh a sina cos a).
pressure parameter = K‘ (p/E) (a/h) tana.
pressure parameter for zero torque,

torque parameter = (K‘/E) (T/a%h 27 sin? a).
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Poisson’s ratio,

mean radius of curvature = (R, +R,)/2 cos a.
membrane stresses of prebuckling state,

edge stresses due to elastic restraint,
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Subscripts following a comma indicate differentiation.



SECTION 1

BUCKLING OF CIRCULAR COMCAL SHELLS UNDER COMBINED

TORSION AND EXTERNAL OR INTERNAL PRESSURE

Josef Singer and Menehem Baruch



INTRODUCTION

In Ref. 1 a method was developed for the analysis of the instability of conical shells under ex-
ternal pressure,

The method is based on & solution of the Donnell type stability equations, derived by Seide
(Ref. 2 and 3), and rederived in a modified form to facilitate solution by the Galerkin method, in the
presence of slightly relaxed boundary conditions. The solution satisfies the usual simple support con-
ditions regarding the radial deflections, w, rigorously, but implies elastic restraints as far as the
axial and circumferential displacements are concerned. However, the constraint on the circumferential,
v, displacements is of such a nature that it practically represents the rigid fixation required by the
usual simple supports; and the much weaker constraint on the axial, u, displacements (in the direc-
tion of the generators) combines with the very small u displacements themselves to a condition ap-
proximating freedom from axial restraint. The effect of the u restraint on the instability of cylindri-
cal and conical shells under external preasure was previously investigated and the critical pressures
found to differ by 1—2 percent for typical shells, (Ref, 4 and 5). For the case of instability under
torsion, the effect of overall axial constraint was investigated by Donnell (Ref. 6) for cylindrical shells,
and found to be negligible. Batdorf (Ref. 7), who compared results calculated under the customary
simple support assumptions u £ 0, v =0 with those of Leggett (Ref. 8), for u=o0, v =0, also found
close agreement indicating the unimportance of axial constraint,

The method of Ref. 1 is now applied to investigate buckling of thin truncated conical shells
under combined torsion and axisymmetrical external or internal pressure.

The problem of buckling of thin conical shells in pure torsion was firat treated by Pfluger (Ref.
9), but the solution given there is valid only for shells with small cone angle. Seide (Ref. 10) obtain-
ed a nior e accurate solution which is not restricted to small cone angles. Though the boundary condi-
tions of the present analysis are slightly different to those of Ref. 10, Seide’s solution is used for

comparison in the limiting case of zero pressure,
DIFFERENTIAL EQUATIONS, BOUNDARY CONDITIONS AND SOLUTION

The stability equations for a thin conical shell of Refs, 2 and 3 can be written in non-dimension-



al form, as in Ref. 1,

(x/sin® a) H, (xu) = cot a [L' (w) - L‘ (w)]
(x/sin? q) H, (xv) = cot a L. (w)
and

H, {(x/sin2 a) H, (w) - (K‘/E) |x? . +6¢ {(x/sin? a) w’¢¢

+x? w'x] +27 [(x%*/sinag)w —(x/sina)w ¢] l}+ K* cos? a(x®w

.xx).xx
x )X

where u, v, and w are the additional displacements caused by buckling
K' = 1201 =42 (ah)’

The operator H, is defined as

H, (z)= xsina(xsin az’")‘" Y2 bt xsina (z,(pd)/x sin a)."

+ (Z.quﬁ /x* gin? a) + 2(2'¢¢/ll) — x8in a(sin az"/x).‘
and L, L, and L, are further operators defined as
d
L @) = [v(3p)x-(1+0)] [x* z . txz, +(1/sin*a) 2 b~ z)
L @) = (1/sin24q) [(1 + 1) (xz)'x ~-(3+) z],¢¢

L. (z) = (1/sina) [(2 +) x'z." +3xz  +a+ (1/8in? q) z’¢¢],¢

=0

(L.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

To facilitate solution by the Galerkin method, Eq. ¢.3) can be rederived in a modified form as in

Ref. 1.



(1/x? sin? o) H, (w) - K* (@ /Eyw  + ('5¢/E) [(1/x? 8in? a) w.¢¢

+(1/x)w 142 (F‘¢/E) [(1/x sin a) w.l¢ ~ (1/x2 sin q) w'¢]l (1.9)

+(1/x3) x* cos’aH;l [(G3w_) 1=0

yxx/ xx

where H;l is an inverse operator defined by
-1
H, [, @] -z (1.10)

The ‘modified equation, Eq. (1.9), has the advantage that it actually represents the radial
equilibrium of the forces on an element of the shell, and not a higher order derivative of it. Hence
one has no doubt that its Galerkin solution is an upper bound, whereas with Eq, (1.3) this could
not be stated with certainty.

The bouz dary conditions for the buckling displacements for a circular truncated cone which

is supported in a manner approximating the conventional simple supports are:

w =20 at x = 1,x, (1.11)

and

L (v/x) W at x = Lx, (1.12)

Instead of the usual requirements that v=0 and u is unrestrained at the end sections, it is here
assumed that the displacements in the u and v directions are resisted by elastic supports, as
will be shown in detail later.

The solution of Ref. 1 is now extended in a manner suggested by Batdorf for cylindrical shells

(Ref. 7). Two formulations of the solution apply to buckling of conical shells in torsion:



[
]

Sm [sin te ngl L A x4 contg u_:z; , Ex"]

Jm [cos t¢ $ B x"+ sin t¢ £ F x")
n=1,3..., n n=2.4....n

<
[

Jm [sin te § C x® +costg § D x*] (1.13a)
n=1,3,.. " 0=2 4,.. "

£
]

[
L

Jm [sin t 3 A x* +cos tg :2; E x*]

n=1

<
n

Jm [cos t¢ § Bn x* + sintg E F‘.I x*]
n=1 n=2

£
]

Imlsintg £ C x"+costy £ D_x'] (1.13b)
n=] n=2

where C , D and t arereal, (t is the number of circumferential waves of the buckling deforma-

tion), s is the complex number
8 = y+inf8 (14.1)

n is an integer and the symbol Nm indicates the imaginary part of the solution.

Restrictions have to be imposed on n, in Eqs. (1.13a) or (1.13b), as shown, since only an
asymmetric deflection function can represent the torsional displacement. The complete series,
Egs. (1.13a) with no restrictions on n, or Egs. (1.13b) commencing from n =1 in both terms of
each function, do not represent a possible torsional displacement, because then the two terms of
each function would be equal, with no preference for the sin té or «cos t¢ term, In Batdorf’s
formulation for cylindrical shells (Eq.[16] of Ref.7 or Eq. [6] of Ref. 11) no similar restrictions
were neceasary, as they are automatically introduced by the orthoganality relations. However,

Flugge (Ref. 12) introduces restrictions similar to those of Eqs. (1,13a) in his solution for



cylindrical shells as reasonable and advisable.

In practice, finite series replace Eqs. (1.13a) and (1.13b). In the first formulation n varies
from 1 to N for the first terms of Eqgs, (1.13a) and from 2 to N 11 for the second terms. In the
second formulation n varies from 1 to N or N—1 for the first terms of Eqs. (1.13b) and 2 to
N for the second terms. It should be noted that for pure torsion loading, the first formulation con-
verges more rapidly, but the second formulation is more general and applies also to combined load-
inga.

It may be pointed out that some alternative series may be written instead of Eqs. (1.13b) for
the second formulation, since the essential quality is the asymmetry introduced. For example, n
could commence at | for both terms, leaving out any one term of the first or second group to intro-
duce the asymmetry. However, the form of Eqs. (1.13b) is most the orderly and convenient one, and
for finite series, the other forms yield either identical results or results which differ only slightly;
though one can arrange sometimes special forms which converge more rapidly, if one remembers that
the terms of Eqs. (1.13a) are the most important ones for the buckling in torsion.

Now, if the complex functions, whose imaginary parts represent the assumed solution, Eqs,
(1.13a) or (1.13b), satisfy the differential equations, Eqs. (1.1) and (1.2), the equations will also be
satisfied by the imaginary parts. Substitution of the complex functions of Eqs. (1.13a) or (1.13b) in-
to Egs. (1.1) and (1.2) yields, therefore

A - cosasina(s~1)[t?+(s+1)(vs-1)sin?q] c

2
' o2 (834 N uinas (52— 1) sin'a

o (1.15)

B, - —tcos alt? — sin? g [e3 (2+v)+;(1—-v)+ 11} c, (1.16)
-2t (s + Dain? a+(s? - 1) sinte

and similarly

E, - co8 a sin a (s ~ l).[t’ +(s+1) (V:_ 1) sin? a) D, (1.17)
tY_2t2 (s + 1) sin?a+ (8= 1) sin*a




Fo tcosalt? —sin2al8? (2+v) +s(1-v)+ 1]} D (1.18)

: t4_2t2 (32 + 1) sin? g+ (8% - l)2 sin® ¢ *

To ensure compliance with the boundary conditions Eqs. (1.11) and (1.12), one has to define B8

as
B = u/lgx, (1.19)
and y as
y = (1-3)/2 (1.20)

as in Ref. 1,

EFFECT OF ELASTIC RESTRAINT

The axial and circumferential displacements do not vanish, but the edges are assumed to be
clastically restrained. It is assumed that the elastic restraints come into action only at the onset
of buckling, The displacemenis prior to buckling are not restrained, and the stress prior to buckling,
does therefore not include any elastic restraint, As a result of the assumed buckling displacements

Egs. (1.13) restraining stresses o* and r* appear in the elastic supports,
X

ot = [E/(l-—vz)][u'x+(v/x sina) (v +usina-wcos a)]

{s(s=1)[t?= (s + 1) sin? al}

(8- 2¢2 (s2 + 1) sina +(s®~ 1)2 sin® g]

s~1

= E sinacosa Jm El x [C, sintg+D_costg]

(1.21)

and



f:¢ = [E/2 (1 +)] [v.x - (1/x sin a) (v sina ~u ¢)]

R4

82 (s - 1)sin? a

= Etcostgcosa Im X x*~! 7 C, costp~D, sintg]
. [t4-2t2 (s2 + 1) sin®a + (82~ 1) sinta)
(1.22)
The spring constants of the elastic supports can now be defined as
k, = gf/eu and k, = r:¢/nv (1.23)

Substitutions yield for x =1, X,

% cos (nBlg x) [(MQ-—PN)/(M2 +N2)] (C, sintg + D, cos tg)

k, = (E/ax) (1.24)

3 cos (aBlgx) (MT—RN)/(M* +N')1(C, sints + D, coste)

and

S cos (nBlgx) [(M] ~HN)/(M" + N')1(C, cos té —D_ sin te)

E .12 n
R —— . (1.25)
ax 2 cos (nBlgx) [ML-KN)/(M #N)](C, costg-D_ sinte)

where
M= t*-262(* =028 + Dsinfa+[(@*B8" + 124" - 43202 8" ] sin“a (1.26)
N = 4ynBlG* -n?B8 =1 sin?a~1*]sin*a (1.27)
Pelyly-D-n?*B lt*+y[3n2B8 =12 + Usin*a (1.28)
Q =nB2y-Dit?+ 0B -3y%+ 1) sin*al (1.29)
R=(G-Dt*al(-2y*+y*+y* ~y+ D +(6y* =3y + ) n?B 1sin’a (1.30)
T « 0Bl +((=6)* +3y* = 1) = (1-2)n?B"] sin?a} - (1.31)



H=y -y2+(Q-3pn2g° (1.32)
J = nBBy* -2 —n2g’ (1.33)
K = 2 [(=2)° + 52 + D) = (3-2)) n? 8" sin*a (1.34)
L = -nB(2-9) 4y sinta (1.35)

It should be noted that the spring constants k, and k  have the dimensions of stress per
inch (psi per inch), and that the restrictions on the values n imposed in Eqs. (1.13a) and (1.13b)
apply to all the expressions,

To obtain an estimate of the order of magnitude of the spring constants, the first approxima-
tion (the solution with the smallest number of terms) suffices. For both formulations this is the
solution with n =1 in the first terms of Eqs. (1.13) and n = 2 in the second terms,

The typical shells of the following dimensions are considered for the purpose of this estimate

(see Fig.2):

(a) a = 30° (b) a = 40°
a = 57.59n a = 7.78"
X, = 1.5 X, = 2.5
h = 0.1" h = 0.0158"

Taking v=0.3 and n=1 and 2, in accordance with the restrictions of Egs. (1,13a) and

(1.13b), cne obtains at x =1 (where the largest values occur) the following mean values of the

spring constants :

SHELL (a) (b)
k,/E ~ 0.0059 ~ 0.0420
k,/E ~ 2.63 - 4.55

At x =x, , the spring constants are (1/x2) times the above values,



10

It should be noted that the spring constants computed from Eqs. (1.24) and (1,25) are functions
of ¢ , which go to infinity wherever u or v vanishes. The reason for this behaviour is the fact
that the restraints introduced by the solution are not physical springs, and yield finite restraining
forces even at points of vanishing displacements, Since however at such points no work is done by
those forces, the analysis is not affected. The mean integrated effects of the restraints do behave
as springs (though negative ones) and therefore the mean spring coefficients are considered.

As for external pressure, the spring constants in the circumferential direction, k , are very
large, and hence the solution approaches the realistic condition of vanishing circumferential displace-
ment (v =0) at the supported ends. The spring constants in the axial direction, k_, although about
1/100 of k_ , are still large, while the usual conditions of simple supports (no restraint on u) would
be approximated by a small spring constant. However, since the u displacements are much smaller
that the w displacements  the restraining axial forces will be small, although k_ is of consider-
able magnitude. Note that k is negative, Hence the solution introduces a negative elastic restraint
which would tend to reduce the stiffness of the shell, The order of magnitude of the spring coefficients
is the same as for external pressure. Shell (b) has larger spring coefficients than the typical shells
investigated in Ref. 1. However, from Ref. 5, the effect is secn to be less than 4% even for such
“strong* springs,

It seems reasonable to assume that the effect of axial constraint on the instability in torsion
should be even less than that under external pressure loading. Hence the effect of the springs can be

neglected as in Ref. 1,

BUCKLING UNDER UNIFORM HYDROSTATIC EXTERNAL
OR INTERNAL PRESSURE AND TORSION

The basic equilibrium conditions of the conical shell yield the following relations for the mem-

brane stresses in the case of extemal or intemal hydrostatic pressure loading and torsion.
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5, =3(@/2)(a/M)xtana (1.36)
5¢ = 3p(a/h) x tan a (1.37)
7 5 = T/a’h 2 x? sin? @ (1.38)

In Eqs. (1.36) and (1,37) the minus sign is for external pressure loading and the plus sign for
internal pressure.

If it is assumed that the boundary conditions come into action only after the prebuckling stress
state has been established, these stresses satisfy the equilibrium conditions exactly. If the bounda-
ry conditions are taken into account, additional bending stresses appear, which however are signifi-
cant only in the neighbourhood of the supports,

Assuming now that for the buckling analysis the prebuckling stress is represented satisfactorily

by Eqs. (1.36) to (1.38), the modified third stability equation, Eq. (1.9), becomes

(1/x2 sin? o) H, (w) £ K* (p/E) (a/h) tan a [(x/2) W .+ (1/x sin? o) w gyt (0 w ]

~ 2 (K*/E) (T/a2h 2 sin? @) [(1/x® sin a) w . (1/x* sin a) w ¢1 (1.39)

« (1)K  cos? o H ' [P w ) 1= 0

The buckling load is obtained from the requirement that the solution proposed in Eq. (1.13) must

satisfy Eq. (1.39), this requirement leads to
Am }E {cn{ sin tg {;:--4 {82 (5—2)2 ~ 2(t%/sin? a) [(s - 1)2 + 11 + (t*/sin* o)}
+ K (p/E) (a/h) tan a x*= {[s (s + 1)/2] = (t*/sin? @)}
+ K cos? g x~2 (U + V) 82 (s2- 1) (U-iV) }

- cos te [(K‘/E) (T/a%h 27 sin? @) x*~* 2(t/sin a) (s — 1)]‘}
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+D, {'cos té {x"“ {s? (s — 2)2 — 2(t*/sin? @) [(s 1)2 + 11 + (t4/sin* ) |
+ K‘ (p/E) (a/h) tan a x*—! {[s (s + 1)/2] ~ (tz/ainz a)l

+K cos? axt =2 (P VY a2 (s2 - 1) (U - iV)}

+8intg l(K‘/E) (T/a%h 2r sin® q) x*=* 2(t/sin a) (s - 1)]}% (1.40)

where
U = sinal(y? - D" =2@y2 - Da?B +048 1= 212 (y* + 1=0?B") + (14/sin? a) (1.41)
vV = 4ynB[-in‘a(y‘—1-n'ﬁ’)—t'] (1.42)

and the summation must be carried out over all integral values of n, in accordance with the restric -
tions of Eqs, (1.13a) or (1.13b),

Equation (1.40) will be evaluated by the Galerkin method. The left hand side of the equation
will be multiplied once by ¥m [xF sin t$] x sin adx d¢p and once by JIm[x*cos t¢p] x sinadx dg,

and the products will be integrated from 1 to x, and from 0 to 2n, where

2

re=y+ imfB (1.43)

and m is an integer.

Two sets of Galerkin integrals are obtained
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0[" sin? t¢ sina lf“2 = ' sin (m B lgx) {Cnicm (n Blgx) (x % 3m (A)
x 7 3m@B)+ 2 Im(C)] + sin (nBlgx) (x L R(A)
i R(B) + < RO

+D_ lcos (0 Blgx)[x " Im(D)] + sin (n B1gx) X" mnm}mw -0 (1.44)

and
of" cos? tg sina lf"z s ' sin (mBlgx) {Dnlcos (n B lgx) [xy_‘ Am(A)

4 m(B)+ X Sm(C)] + sin (0 Blgx) [X* RA)

X RB) T RO

+C,_ lcos (nBlgn) [x " Im(D)] + sin (nPlgx) (X" * A(D) |} xdxdg = 0 (1.45)

where, as in Ref, 1,

A=st(s-2" - 20sin’a [a-D" +1] +@*/sin*a) (1.46)

B - K'eosa+V) a2 -DWU-iV) (1.47)

C = +K'(p/E) (a/b) tanalla(s +1)/2) - (t*/sin* a) | (1.48)
and

D = (K*/E) (T/ah 2r sin? a) 2(t/sin a) (s — 1) (1.49)

After integration and some manipulations, Eqs, (1.44) and (1.45) become
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p {Cn i[(—l)m.n x,jy—z -11G, (n,m) + K* cos? a [(—l)m+n x:y—l] G, (n,m)
£k 10" <Y 116, (n,m) (p/E) (a/h) tan a

V—

+D_ (=" xz' 116G, (a,m) (K'/E) (T/a%h 27 sin? @) l} =0 (1.50)

> { D, =)™ %" = 116G, (n,m) + K cos? a [(~1)""" . ~ 11 G, (n,m)

2
£K (=" T 116, (n,m) (p/E) (a/h) tan al
~C =D % 2116, (a,m) (K*/E) (T/a?h 21 sin? o) |} -0 (1.51)

The symbols G (n,m) denote values of G functions for a particular n and m. The functions

G,, G2 and G’ are given by Eqs. (64), (65) and (66) of Ref. 1 (see also Appendix A) and

( [ m+n m-n
G, (,m) = K, (n) ]
¢ ) @i B 41 cmen) B
(1.52)
1 1
+ K, () ( - - ]
2 4-1 " +m+n) B 4@p-1) +(m-n) B
where
K, (0) = 2 (atBYsin o (1.53)
K, (@) = 4(y~1)" (t/sin a) (1.54)

Note that in Eqs. (1,50) and (1.51) the sign of the third term is plus for external pressure and minus
for internal pressure.
For a fixed value of m, Eqa. (1.50) and (1.51) are linear equations in terms of the coefficients

C, and D, . The load terms also sppear linearly in the equations. If m is allowed to vary in the
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same way as n, the critical value of the torque for a given external or internal pressure, or the critic-
al external preasure for a given torque, can be calculated from the vanishing of the determinant whose
elements are the multipliers of the coefficients C_ and D, .

If one writes

Qn,m) = [(--l)“l+ll x:y—-z -11G, (n,m) + x* cos? a [(—1)-“ x:y -1]G, (n,p)

y+

2 Y G, (n,m) (1.55)

ix[(—l)mﬂ‘ x

where A is a pressure parameter defined by

A = K (B/E) (a/h) tan o (1.56)
and
R@m) = u [(-—l)nﬂ x:y_2 -1]G, (n,m) (1.57)

where u is a torque parameter defined by

= (K*/E) (T/a%h 27 sin? @) = (K'/E) 1 (1.58)

the following linear equations are obtained:

In the first formulation, Eqs. (1.13a),

QLY C + QB Cyn. ..+ QN Cy +RE1D, +R (4D, +... +R(N2 1,1) Dy, =0

QLY C,+QABNC +...+ QNN Cy +R23)D, +R(4,3)D, +...+R(N£13)Dy, =0

O(IN)C, +QBN)Cy +... + QINN)Cy + R(2N)D, + R(4M) D, + ...+ R(N£I,N) Dy, =0
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~R(1,2)C, -R3,)C, ~...-RN,2)Cy +Q(2,2) D, + Q(4;2) D, +. ..+ Q(N£1,2) Dy, = 0

~R(14)C, R34 C, —... ~R(N4)Cy +Q2,4) D, + Q44) D, +.. .+ Q(N£1,4) Dy, =0

—R(LN£1)C, ~R(3,N£1)C,~... ~R(N,N£1)Cpy + Q(2N21)D, + Q(4,N£1)D +. ..+ QN1 N£1) Dy, =0

(1.59)
and in the second formulation, Eqs, (1.13b),
eMnC,+Q@RNC, +...+QN,)Cr +R(2,1)D, +R(3,1)D, +... +R(N,1)Dy =0
Q(1,2)C,+Q(2,2)Cy+...+QN,2)Cy +R(2,2)D, +R(3,2) D, +... +R(N,2) Dy =0
QNC, +QEN)C,+...+ QNN)Cy +R(ZN)D, +R(3N)D, +... + R(NN)Dy =0
~-R(L,2)C,~R(2,2)C, ... - R(N,2) €, + Q(2,2) D, + Q(3,2) Dy +.. .+ Q(N,2) Dy = 0
-R(1,3)C,-R(2,INC, —...-R(N,3)Cy +Q(2,3) D, +Q(3,3)D, +...+QA(N,3) Dy = 0
-R(L,N)C, -R(ZN)C, ~...~RN,N)C\ +Q(2,N)D, +Q(3,N)D, +...+Q(N,N)D\ = 0 (1.60)

For any given pressure, the lowest eigenvalue u of the determinant of the coefficients of C_~ and
D, of Eqs. (1.59) or (1.60) yields the critical torque. For any given torque the lowest eigenvalue A

of that determinant yields the critical external pressure. It should be noted that the value of t (the
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number of circumferential waves into which the shell buckles) which “minimizes* the critical load has
to be used.

It may be noted that the determinant of the coefficients of Egs. (1,59) can be obtained directly
from these equations, which result when m varies in the same manner as n; or from a larger set,
which appears when m is allowed to take all values from one to N (or N + 1), after rearranging of

raws and columns as in Ref, 11,

TABLE 1

Critical Shear Stress for Torsion Alone

Shetl (a) (b) (c)
a 30° 40° 40°
x, 1.5 2.5 6.35
" 0.333 0.6 0.843
2 §7.59 in. 7.78 in 3.06 in
h 0.1 in. 0.C158 in 0.0158 in
v 0.3 0.3 0.33
Order Critical Maximum Shear Stress (r___  /E)x 106
of With With With With With With
Determinant | Egs, (113a)| Egs.(1.13b)| Egs.(1.13a)| Fgs.(1.13b) | Eqs. (1.13a) | Egs.(1.13b)
2 915 915 683 683 2325 2325
3 743 914 548 680 1808 2298
4 735 910
5 732 742 539 545 1735 1780
6 737
7 731
8 728
9 727 540 1540
Approx. Critical
Stress 722 520 1520
(Seide, Ref. 10)

The critical torques, in riie case of pure torsion loading, and the corresponding critical shear
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stresses, were calculated with both formulations, Eqs, (1.13a) and (1,13b), for the typical shells of
Fig. 2. The maximum critical shear stresses 7__  are tabulated in Table 1, and are compared
with the approximate formula of Ref, 10. The results indicate rapid convergence,

As in the case of buckling under external pressure, convergence is slower for longer or shallower
shells, i.e. those with larger taper ratio (i), For shell (a), a typical short shell, a 3 x 3 stability de-
terminant of the first formulation — Eqs. (1.13a), or a § x § determinant of the second formulation —
Eqgs. (1.13b), yields a critical shear stress which is only about 2,5% too high, For shell (b), a typical
medium shell, a 3 x 3 determinant of the first formulation, or a § x 5 determinant of the second formula-
tion, yields a critical shear stress which is about 4,5% too high, For shell (c), a typical long shell of
large taper ratio, determinants of similar order yield critical stresses about 17% and 15.5% too high,
respectively, The first formulation, Eqs. (1.13a), is indeed superior for pure torsion loading. However,
for longer and shallower shells, of larger taper ratio, for which the buckling deformation differs consid-
ably from that of cylindrical shells (see Section 3 of this report, or Ref. 19 for experimental evidence),
the s econd formulation improves the solution considerably for the same range of n, though with higher
order determinants,

For practical purposes, a 3 term solution, with n taking values up to 3, which corresponds to a
3 x 3 stability determinant in the first formulation or a § x 5 one in the second one, suffices unless the
taper ratio ¢ of the shell is lf;rge.

The critical shear stresses obtained from higher order determinants are practically identical to
those obtained by the method of Ref. 10, though Seide’s boundary conditions differ slightly. Similar
agreement was found in the case of extemnal pressure (see Ref, 1). The corresponding critical torsion
ratios (T/T cos? a) are also plotted in Fig, 22.

The maximum critical shear stress in the presence of external pressure is then calculated for the
same typical shells, The ratio of critical shear stress to that for pure torsion are tabulated in Table 2,
The second approximation and then a solution obtained with a 7th or 9th order determinant are given,
The second formulation, F.qs. (1.13b), is used here. The results are also compared with a semi-empiri-
cal interaction formula obtained by Crate, Batdorf, and Baab (Ref, 13) for cylindrical shells under com-
bined intemal pressure and torsion, which was confirmed by the theoretical analysis of Hopkins and

Brown (Ref, 14), and was reconfirmed also for combined external pressure and torsion, both theoretically
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and experimentally, by Suer and Harris (Ref. 15). This formula can be written

WA + (i)’ = 1 (1.61)

where A and ., are the critical pressure parameter for zero torque and the critical torque parameter

for zero pressure, respectively,

TABLE 2

Critical Shear Stress Ratio for Torsion and Uniform External or Internal Pressure

,cr./rcr. torsion alone or (IJ'/V-())
Order of .
Shell | R e e ey
3 1.0 0.827 | 0.646 | 0.440 0
(a) 30° 1.5
7 1.0 0.866 | 0.713 0.504 0
3 1.0 0.832 | 0.650 | 0.436 0
(b) 400 2.5 7 1.0 0.874 | 0.725 0.526 0
9 1.0 0.735 0
0 3 1.0 0.861 { 0.709 | 0.490
(c) 40 6.35
7 1.0 0.903 | 0.815 | 0.711
Semi-Empirical Interaction formula of Ref. 13, 1.0 0.865 | 0.707 0.500 0

The computations and interaction curves can casily be extended to intemal pressures, Such
calculations are in progress now,

The results are plotted in Fig. 3. For cones with small or medium taper ratio, whose buckling
behaviour is similar to that of cylindrical shells, the interaction curves are also very similar, For
shell (a) the curve is practically identical to the semi-empirical formula of Ref. 13, Eq. (1.61), and
for shell (b) it differs only slightly (by about 2.5% for A/A; = 0.5 with a 7 x 7 determinant). A sample
calculation with a 9 x 9 determinant indicated a slightly larger difference (4% at the same point). The

typical shell of large taper ratio, shell (c), whose buckling behaviour differs considerably from that of
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a cylindrical shell (see for example Fig. 19 and Fig, 23), exhibits also an entirely different interaction
curve (for example, p/p; is about 14% higher than that for a cylindrical shell at A/Aj = 0.25).

More extensive computations are required to establish a set of reliable interaction curves for
conical shells, but the present calculations demonstrate clearly that for external pressure use of Eq.
(1.61) for conical shells will result in conservative estimates, especially so for (a) shell of large
taper ratio. It should be noted,however, that preliminary calculations have shown that this is not the

case for internal pressure !

BUCKLING UNDER LATERAL PRESSURE VARYING IN THE AXIAL DIRECTION,
AXISYMMETRICAL TEMPERATURE DISTRIBUTIONS AND TORSION

Since the above analysis is linear, it may be extended to include other loadings which can be
expected to have buckling displacements represented by Eqs. (1.13). If the more general second
formulaticn of Eqs. (1.13b) is considered, the analysis applies to combined loadings of lateral pressure
varying in the axial direction, thermal stresses caused by axisymmetrical temperature distributions and
torsion, One has only to modily the load terms in Eqs. (1.60) in an appropriate manner, i.e. to replace
Q (n,m) of Eq. (1.55) by

m-tn

Qmm = (=D 211 6, m) 4 K cos?a (=" %) =116, (n,m)

+X* 0, /B) (/M tan a I, (n,m) (=D 20 1)

. o F min  2y4p
+ (K /li))'lll"f__-:0 b';Jp(n.m)[F‘) x,  —1)
0 A min  2y+q
-rEo . Jq (n,m) [(=1) X, ~-111 (1.62)
f'._l

Vhere p, and ], are given by Egs. [77] and [94] of Ref. 1 (or Fgs. (45] and (48] of Ref. 16), and T,
bp ) Cqr ]p and Jq are given by Eqs. [1], [3), [28] and [29] of Re . 16 respectively.



21

SECTION 2

EXPERIMENTAL INVESTIGATION OF THE BUCKLING OF CONICAL

SHELLS UNDER UNIFORM HYDROSTATIC PRESSURE

Josef Singer ond Abrahom Eckstein
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INTRODUCTION

In Ref, 17 the results of an experimental investigation of the instability of thin truncated conical
shells under uniform external pressure, carried out at the Technion, were reported. Test of 71 shells
made of a weldable aluminum alloy were described and correlated with the theoretical analysis of
Refs. 1 and 18, and also compared with other experimental investigations (Refs. 19—21). The theoret-
ical analyses were verified in general by the test results, though there was considerable scatter. Care-
ful analysis of the causes of scatter however indicated a better fit of the theorctical curve than was
at first apparent,

In order to investigate further some of the causes of scatter, and in order to consolidate the ex-
perimental verification of the theory, two additional series of tests were carried out: One with butt-
welded stainless steel specimens (and a few butt-welded aluminumi alloy cones), and one with bonded
(lap-jointed) alclad specimens,

33 truncated cones tested under uniform external pressure covering the (p /h) range (mean

.

v

radius of cwvature to thickness ratios) 240 - 725,

TEST APPARATUS AND PROCEDURE

The test rig used in the earlier investigation (Ref, 17) is also employed here. It is shown in Fig.
3 and 4, after it has been adapted for combined torsion and external pressure loading, and is described
in Section 3, The rig for external pressure loading consists of : a pressurc vessel with end fixtures
for the specimens, a pressurizing system, which in the present tests is throttied air from a central com-
pressed air supply, and a pressure measuring system, The latter includes a head of mercury (or of
alcohol, for lower pressures) as well as a sensitive Statham pressure gage (which records via an un-
bonded strain gage). With this duplication, continuous calibration of the Statham gage during the test
is possible, while utilizing its sensitivity,

As in earlier tests (Ref, 17), simple support conditions are approached as far as possible, The

end fittings here have a circular profile and the outer rings have 0-scals at the contact line, so that the
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rotation of the generators is only slightly restrained, see Fig. 4. The top and bottom fixtures are simi-
lar, The displacement along the generators is restrained by the friction of the seal and inner ring, but
the ends are free to move axially as a whole. Since the effect of restraint along the generators on the
buckling pressure is very small (see Ref, 5), while restraint of edge rotation has a significant effect
on it, the test boundary conditions appear to be a fair approximation to the theoretical simple support

conditions

w =0 )
v =0
at top and bottom
u #0 (N =0) r end fixtures (2.1)
and  w + (v/x) w, =0 J

The second series of tests confirm this very clearly, as discussed in detail below.

The test procedure was similar to that employed in the earlier tests, except that the visual in-
dication disc (Fig. 4 of Ref, 17) was not used in most of the present tests, The out-ofroundness was
measured, with a dial gage mounted on a rotary arm (see Fig. 6), at a radius slightly larger than the
mean, where the maximum buckling deflection was expected. For some cones these measurements were
also taken at two or three radii and compared. The out-of-roundness measurements were mapped for all
specimens (sce for example Figs. 7 and 8). " he out-of-roundness A was then computed by Holt’s
method (Ref. 22, or method (d) of Ref, 23, or method (c) of Ref. 24), A, is given in Table §.

As the pressure is increased gradually in the test, the Statham pressure gage is recalibrated
against the mercury or alcohol head. The actual buckling pressures are, however, read on the poten-
tiometer activated by the more sensitive Statham gage, and translated into pressure with the aid of the
new calibration curve obtained during the test.

Three values of buckling pressure are recorded in each test: (1) The onset of buckling,

(2) complete buckling, and (3) plastic collapse. The onset of buckling is the formation of the first
true buckling wave, as distinct from the initial waviness which increases gradually with increase in

pressure, This gradual increasc in initial waviness is an equilibrium phenomenon, which only near



the critical load transforms into an instability phenomenon (usually with a “puck“). The onset of buck-
ling is indicated by a loud “puck“, accompanied by a small pressure drop.

The transition, with slow increase in pressure, from the f{irst wave to the fully buckled condition
is either gradual, the waves appearing one after the other (or in pairs) along the circumference each
with a “puck, orit is sudden, the waves appearing along the entire circumference si-
multaneously with a large “puck”. In many of the “good” specimens, with small out-bf-coundness, the
onset of buckling brought out all the lobes and represented therefore also complete buckling.

After the shell is fully buckled, the pressure is released and the test }epeated, unless consider-
able plastic deformations are observed. In the second series (Alclad specimens), after two or three re-
petitons of the test, the upper end fixture is tightened to obtain partial clamping, and the test is repeat-
ed with the changed boundary conditions,

All the tests are continued into the plastic regime, and finally the plastic collapse pressure is
recorded,

Since the standard tolerances for the thin gage sheet, of which the cones were made, permit thick-
ness variations of up to + 10% in a batch of the same nominal size, the thickness of the cones was
again accurately measured, Thickness measurements were taken at 25 points for each specimen and
averaged, The results indicated very small variations (of the order of — 0.01 — 0.02 mm) in the thick-
ness of each specimen, but slightly larger variations of thickness between specimens (up to + 0.03 mm),

Hence for some specimens the nominal thickness had to be corrected accordingly.

TEST SPECIMENS

In order to extend the range of geometrical parameters covered, the taper ratios of the specimens
of the present tests were chosen to differ from those of Ref. 17, The geometries and the numbering of
the specimens are summarized in Table 3. It should be noted, that the external pressure tests do not
cover all the geometries given in the table, since some were tested only in torsion or under combined

loading of torsion and external pressure (see Section 3),



25

TABLE 3

Geometries and Numbering of Specimens

Taper Ratio Serial Numbers
faen |0 P | Buadd [P T duninum Alay
o 2z | @ | 5o [ os | s 313
- 149 | 330 127 0.600 317 319°
" 174 | 319 50 0.843 411 413 4140
102 | 227 127 0.600 416 | 417 419°
Alclad 2024-T3
252 | 463 50 0.843 321
30
149 | 330 127 0.600 327 328
o 174 | 319 50 0.843 21 | 422
102 | 227 127 0.600 426
«oFor_all specimens R, = 317.5 mm. |Rominal byl 0.4 0.6 0.8 1.0

The test cones of the first series were made of annealed stainless steel Z 10 CNT 18 (a French
specification of a non-heat-treatable stainless steel similar to the American 18-8 — 321), Some of the
specimens of this series were made of a weldable aluminum alloy AGS5—X 516 (a French specification
roughly similar to the American 5052). The specimens of the second series were made of 2024-T3

Alclad. The typical properties of these materials are given in Table 4,

T ABLE 4

Mechanical Properties of Materials

Material Stainless Steel Aluminum Alloy Alclad

Specification Z 10 CNT 18 AGS - X 516 2024 - T3
T (psi) 27.0 x 108 10.3 x 108 10.6 x 108
v 0.3 0.3 0.33

O ield (nsi 33000 20600 39000
yield (psi)

CUTS (pai) 78000 43000 59000
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Typical specimens are shown in Figs. 9 and 10. As in the earlier investigations (Ref, 17), the
specimens are fairly large, and were made by standard aircraft methods (described in Ref, 17) at the
Israel Aviation Industries, L.od. For the first series of cones, butt-welded joints were employed in the
aim to approach uniform shells as far as possible, and the type of steel was chosen on account of its
excellent weldability. Argon welding was employed, and extreme care resulted in very uniform welds.
However, some slight waviness still remained near the weld, nearly of the same order as occurred in
the earlier aluminum alloy specimens (of Ref. 17). Though the measured initial out-of-roundness was
not worse, and usually even better, than for the tests of Ref, 17, the initial test results for the steel
cones were on the average much below those for the aluminum alloy specimens of the earlier investiga-
tions. Residual welding stresses were suspected to be the main cause of this reduction. Hence though
the annealed Z 10 CNT 18 is basically non-heat treatable, stress relief heat-treatment to 550°C, and
at a later stage to 990°C, was attempted, but without success, as can be seen from Table 5, Unrelated
tests on the same material carried out at the same time by the metallurgical department of the Israel
Aviation Industries, showed later that effective stress relief can be obtained only when the residual
stresses are near the yield stress of the steel,

Theoretical results on the marked inferiority of stringers as stiffeners for cylindrical shells against
general instability under external ‘pressure (Ref. 25), initiated a review of the earlier dismissal of lap
joints on account of their local stiffening effect. Since fairly strong stringers, distributed evenly around
the circumference of a shell, were found to have raised the critical pressure only by a few percent, it
was concluded that for buckling under external pressure the stiffening of a lap joint is entirely negligible.
The second series of specimens was therefore made with an adhesive bonded lap joint, In the absence of
weldability restrictions, a material with a relatively high yield stress, as appropriate for elastic buck-
ling tests, could be chosen. Alclad 2024—T3 was used, and the shells were joined by an Fpon-Versamid

bond, with a very thin fibre-glass inter-surface mat to improve adhesion,

RESULTS AND BUCKLING BEHAVIOUR

The geometry of the conical shells, the test results and the corresponding theoretical estimates
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are given in Tables 5 and 6. The gcometrical data includes also the initial out-of-roundness /\0 ,
measured after the specimen has been secured in the end fixtures, and for convenience the thickness
is given also in inches. As in Ref. 17, the measured pressures at onset of buckling p,, when the
shell is fully buckled p,, and at complete plastic collapse p, are given; and for comparison the
theoretical values obtained by the methods of Niordson (Ref. 26), Seide (Ref. 18) and Singer (Ref. 1),
follow, As discussed in Ref. 1, though different boundary conditions are assumed in the analyses of
Refs. 1 and 18, their results differ only slightly.

The buckling behaviour of the two series of tests is basically similar, One noticeable difference
is the practically instantaneous transition of the elastic buckling waves to plastic deformation, which
is caused by the lower yield stress of the steel (and AGS aluminum alloy) cones; or more precisely,
by their higher ratios of elastic buckling stress to yield stress, For specimens which are perfect, the
maximum theoretical buckling stress varies between 5,3% to 17,8% of the yield stress for the first series,
whereas for the 2024—-T3 Alclad specimens of the second series the theoretical critical stress is only
between 1,77% to 6.3% of the yield stress, Hence, even without initial imperfections, not very lm;ge am-
plitudes of buckling waves are necessary in the thicker shells to reach the yield stress, though the
buckling phenomenon itself was entirely clastic. Indeed, only when the buckling stress was a very
small fraction of the yield stress, as in the case of the thinnest 2024 — T3 Alclad shells (Specimens 321

and 421, for which the maximum theoretical 0., 18 1.7% and 2.1% respectively of o ) could the

it. yield

pressure be arrested in time to ensure entirely elastic behaviour. The tests for these specimens could
be repeated consistently a number of times on the same cone (see Table 6), while even for the thinnest
steel cones consistent repetition was difficult (though occasionally very nearly achieved, for example

with specimen 416/1),

The buckling behaviour of all the shells can be broadly divided into two groups: one, usually
shells having pronounced local initial dimples, in which the pressure had to be increased considerably
after onset of buckling to bring the shell to the fully buckled state; and one, consisting mainly of
shells having small out-of-roundness, in which the maximum buckling pressure was reached already at
the onset of buckling, coinciding sometimes actually with the fully buckled state, or developing then

into the fully buckled state at a lower pressure, The complete plastic collapse, characterized by the
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typical “folding” of buckles (see Figs. 12 and 14) and accompanied by a large pressure drop, occurred
finally in both groups always at a much higher pressure,

Asg in Ref, 17, the buckling pressure from the point of view of the designer (as emphasized by
Hoff, Ref. 27), being the maximum pressure which the shell can carry without noticeable plastic defor-
mation, is considered, Here, this is the pressure when the shell is fully buckled p; (see Figs. 11 and
13), or the pressure at the onset of buckling p,, whichever is greater, and it is designated here
the buckling pressure p, . Though it may seem logical 10 compare the critical pressure, obtained by
the small deflection analyses of Refs, 1, 18 or 26 with the experimental values for onset of buckling,
it was found in Ref, 17 that the onset of buckling is too sensitive to initial imperfections of the speci-
men to be a useful criterion, In Tables 5 and 6, Po/P,y iS also given, but the comparison of p, with
theory is a better indication of the reliability of the theory, Hence in Figs. 14— 16, p, is presented.

As far as can be judged from the reports (Refs. 19 to 21, 28), most previous experimental investiga-
tions also recorded p, andnot p,. For example, Magula (Ref. 28) calls py =P, the “initial buckling
pressure“, while in one of his tests the first wave appeared at a P, being 33% lower, which is not
considered, It may also be noted, that recent experimental work on cylindrical shells (see for example
Ref. 29) also records buckling loads in the sense defined above and not the onset of buckling.

In Figs, 14 to 16 the ratio of buckling pressure p, to the critical pressure of an equivalent cyl-
indrical shell, of length 1 (the slant length of the cone) radius p  (the mean radius of curvature of
the cone) and the same thickness h, p'hs , is plotted versus th;vtaper ratio Y =1-(R /R,), p‘hs
is essentially that computed by Niordson’s method (Ref. 26), except that the critical pressure for the
equivalent cylindrical shell arrived at by the Niordson's analysis is obtained instead of by von Mises’s
formula (Ref. 30), by a very close approximation to it, as discussed in Refs. 17 or 18,

The first series of tests is summarized in Table § and Fig. 14. If one compares Fig. 14 with Fig.
11 of Ref. 17, it is immediately apparent that the results are rather low. The mean of the experimental
points falls for both taper ratios about 20% below the theoretical curve. A possible cause for the con-
sistent poor results would be residual welding stresses, if compressive stresses of the order of 20% of
the theoretical buckling were found. Tests were carried out on two typical steel shells (311/14 and
411/4). 22 and 20 strain gages, respectively, were attached to the rolled shell prior to welding (at

each location, one on each side of the sheet, and both connected in series so as to measure only mem-
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brane stresses), and balanced, The shell was then welded in exactly the same manner as the regular
specimens, and finally after completion, the change . scrain was recorded. Circumferential residual
strains of 2030 p in./in. were recorded, which correspond to residual circumferential stresses of
500 to 800 psi. Compressive and tensile stresses appear, which vary and change signs rapidly along
a generator (due to the method of welding, in which a considerable number of tack welds preceeded the
continuous seam), but exhibit only slow changes along the circumference. More extensive testing and
strain gaging would be required to give good quantitative estimates of the welding stresses, but the
tests demonstrated very clearly the presence of residual compressive circumferential stresses of up to
25% and even 45% of the maximum critical buckling stress under external pressure, whose mean effect
may reduce the critical pressures by 15% to 25%, as observed, A similar test on an AG 5 aluminum
alloy specimen of double thickness (413) revealed similar magnitudes of residual strains, which how-
ever correspond to stresses that are less than 15% of the critical stresses. Smaller reductions in crit-
ical pressures of 5% to 10% should therefore result, These residual welding stresses appear, however,
to be also an important factor in the interpretation of the test results obtained with butt-welded alumi-
num alloy cones (Ref. 17).

As a further check on the cause of the low results for the steel cones (Fig, 15), strain gages were
attached to one specimen (311/14), and the theoretical buckling pressure which would appear for a
perfect conical shell was determined from the strain gage readings by the extension of Southwell’s
method given for cylindrical shells in Ref, 31, The slope method suggested there was used, and yield-
ed a perfect cone buckling pressure of about 1.29 psi, 31% below the theoretical critical pressure,
Since even after the elimination of the effect of initial imperfections, a very low result is obtained,
the residual welding stresses appear indeed to be the prime cause of the reduced buckling pressures,

Hence, the welded stecl specimens should not be relied upon for evaluation of the theory, un-
less one reduces the theoretical curve by about 20% on account of the existing prestress state, as is
shown by the dotted line in Fig. 15. The points of Fig, 15 are therefore not included in Fig. 17, which
compares various experimental results with theory.

The second series of bonded 2024 — T3 Alclad specimens yielded much better results, as can

be seen in Table 6 and Fig, 16 (the mean of the repeated tests are presented in the figure), These
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tests rcvealed that the end conditions are of much greater importance for thin shells under extemal
pressure than is usually assumed., In most buchling experiments of cylindrical or conical shells the
end fixtures represent practically clamped ends, but the test results are compared with theories for
simple supports, based on the argument that due to the low bending stiffness of a thin shell the effect
of the boundary conditions on the buckling process is negligible, (For example, Ref, 19, 29, 35, 36).
Galletly, Slankard and Wenk (Ref, 36) tried to attain fully clamped boundary conditions but obtained
very good agreement with theories for simple supports. In the present tests the end fixtures were de-
signed to approach simple supports as far as possible; however, by tightening the bolts connecting
the end rings very much, partial clamping was achieved. This was done for 7 thin Alclad specimens
(421 and 321) for which repeated tests were easily carried out, In these tests the specimen was first
attached with simple supports, by minimum tightening of top and fixture bolts (tightening by fingers
only), and tested to the fully buckled state, and retested a number of times. Then the top end fixture
bolts were tightened appreciably and the test repeated with the top end partially clamped (seeTable 6),

The Alclad specimens had in general much lower out-of-roundness, and the onset of buckling
and complete buckling occurred simuitaneously, The repeated tests of the same specimens, with sim-
ple supports, resulted in only a small scatter of the results (about 5%). The simple support behaviour
of the end fixtures was verified by the observed transfer of the slope of the buckling waves beyond
the fixture to the overlap of the cones.

The partial clamping of the top end, in the last part of each test, resulted in a mean increase of
18% in the buckling pressure. This demonstrates very clearly the importance of the boundary conditions
in the buckling process of conical shells under extemal pressure, even for very thin shells, Since the
tightening of the end fixture bolts was not kept under careful control during the tests of Ref. 17, this
may be one of the causes of the scatter of the results there,

The tests of the Alclad specimens reconfirm with more certainty the conclusions of Ref. 17 about
the validity of the theories of Singer (Rex, I} and Seide (Ref, 18). This is shown in Fig. 17 in which
the present results (except the steel cones of Table §) are compared with those of Ref, 17, other tests
and theories. The theories are verificd to the same extent as the classical linear theory for cylindrical
shells (Ref. 30). The older experiments which verified that theory so neatly (see, for example, Fig. 6

of Ref. 7) were for cylinders of small (R/h) ratios. More recent tests with much higher (R/h) ratios
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show a scatter of the same order as Fig. 17,(see Ref. 37, or Ref, 19).

The conclusions of Ref. 17 about the effect of the initial out-of-roundness, are reconfirmed here,
Since the critical stresses are very far from the yield stress, even for the steel specimen, snd the spec-
imens have medium or high (p /h) ratios, the published results on cylindrical shells (Refs. 32 - 34),
which are for very short ahells.:)f low (R/h) ratios, could not be applied. Examination of the pre-test
circularity contours (see for example Figs. 7 and 8), and their corresponding buckling behaviour, as in
Ref. 17, yielding similar observations, though for the thin, and fairly accurate, Alclad specimens the
out-of-roundness was found to have a more pronounced effect on the buckling pressure (for example,
shell 32174 — see Table 6 and Fig. 16).

In Fig. 18 the plastic collapse pressures are plotted together with those obtained in Ref, 17,

The parametric form of Ref, 17 (h)p ) C, versus Z is used,
av ]

where the non-dimensional parameters are

Z=Qp) (1-;:")* (2.1)

and

c, - 02(1=3/n1(p,/E) (D)’ o /b) 2.2)

?

The steel cones of Table § are again not included, since also their plastic collapse pressures
were much below all others, This fact presents another indirect proof of the presence of the residual
stresses discussed above.

The averaging empirical formula of Ref, 17,

=0.42
C = (p /Mm)0.09 Z (2.3)

®p

appears to apply also to the present results of Table 6, though it is slightly conservative,
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SECTION 3

EXPERIMENTAL INVESTIGATION OF THE BUCKLING OF CONICAL

SHELLS UNDER COMBINED TORSION AND EXTERNAL PRESSURE

Josef Singer
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I NTRODUCTI!I ON

Until very recently, no experimental data was available on the buckling of conical shells under
torsion except a few tests by Lundquist and Schuette on truncated cones having a cone angle of 11
degrees (Ref. 38). At Space Technology Laboratories (Ref, 19) a series of preliminary tests on steel
cones in torsion were recently carried out, These tests covered a (p /h) range of 867 — 1500, with
cone angles of 30° and 60°. The purpose of the present torsion tcsts.v:as to provide more experimental
data for verification of the theory of Sejde (Ref, 10) and of the present report, to extend the range of
geometries, and to provide reference points for the tests under combined torsion and external pressure,
which formed the main purpose of the program, The torsion tests covered a (p /h) range of 320 —
725, with cone angles of 30° and 40°. The combined torsion and external pres;;re test covered a
(p /h) range of 256 — 725, again with cone angles of 30° and 40°. 4! specimens were tested in the
pr::gum reported in this section, Part of the specimens were made of annealed stainless steel Z 10

CNT 18, and the remainder of 2024 — T 3 Alclad. The geometries are given in Table 3.

TEST APPARATUS AND PROCEDURE

The test rig for the experimental program of buckling under torsion and under combined torsion
and external pressure is shown in Figs, 4 & 5. It is an adaption of the pressure vessel used in pre-
vious tests. The conical shells are mounted as in the previous tests, but in order to ensure that the
applied load is pure torsion, the cone and torque arm float in a central bearing anchored to the bottom
of the vessel, Special care was taken during manufacture in centering this bearing with respect to the
top flange. The torque arm, which is overdesigned for extra stiffness, rides in its main bearing, at-
tached to the top flange, and the load is applied by a pair of jacks fed by a separate hydraulic system,
The jacks are attached to the side frames and apply the load via strain-gage load beams (load cells)
which are read continuously during the teét.

As shown in Fig. § the end fittings are similar to those used in the earlier tests of Ref. 17, ex-

cept that the inner rings arc serrated to prevent slippage of the specimens. Also, for the cones with
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small lower end radiua, the outer lower ring was replaced by an aluminum ring which has a straight
wedge profile, instead of the circular one with the 0-seal, used otherwise, This end fixture caused
more restraint, but was necessary to prevent slippage (note that a small radius results in very high
shear loads), In general, the end fixture bolts had to be tightened much more in the torsion, and tor-
sion plus external pressure tests, than previously. This removes the test conditions considerably
from the assumed simple supports, but is still further from the clamped boundary conditions than, for
example, the cast Cerrolow end attachment of Ref, 19,

The fitting and centering of specimens and the out-of-roundness measurements are similar to those
described in Section 2 and in Ref, 17. There, an additional circularity contour was obtained near the
small end of the cone, where the maximum shear stresses occur, and buckling commences. For torsion
tests, the torque is applied by the jacks by means of an hydraulic pump, The jack pressure is record-
ed for reference, but the actual force applied by the jacks to the arm is mersured by the precalibrated
load beams which are read, via a switching and balancing unit, on an SR4 strain indicator, The angle
of twist is measured with a light ray from a scale reflected with a mirror (which is attached to the axis
of the cone) to a microscope. The torque is increased in small increments till buckling occurs, Buck-
ling appears very clearly on the microscope, as & sudden “running* of the scale, or even a strong
vibration of the image when the wave formation is very sudden and violent. Simultaneously, the SR4
indicator shows a sudden drop of torque, which is actually the most sensitive indication, “Puck“s
cannot be entirely relied upon here, since especially for the cones of large taper ratio (small lower end
radius), buckling occurs often “quietly“, since it concentrates around the small end (see Fig, 19),

The tests under combined loading were carried out in two ways: (a) Going up to a predetermin-
ed pressure, and then keeping it constant while torque is applied till the shell buckles. (b) Similarly,
only with torque instead of pressure being kept constant. The two procedures yielded fairly close re-
sults, the difference being smaller than the experimental scatter in general, which indicates that linear
theory is applicable,

All the tests were continued beyond the point of buckling to obtain post-buckling curves (see for
example Fig, 21), The Alclad specimens were retested a number of times, but though the twisting de-
formation disappeared entirely upon release of loads, the successive results were always slightly low-

er. This demonstrates the greater sensitivity of buckling in torsion to initial imperfections.
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The tests were usually continued well into the region of plastic deformations.

TORSION TESTS

The results of the pure torsion tests are given in Table 7, and are plotted and compared with
theory in Fig. 22,

The buckling behaviour of conical shells of small taper ratio (see Fig. 20) is very similar to that
of cylindrical shells. The waves cover most of the height of the cone and they resemble closely those
of a cylinder also in form. For conical shells of large taper ratio, the buckling waves concentrate en-
tirely near the small end (see Fig. 19), and their form differs.

In Fig. 22 the results of Table 7 are compared with theory. The critical torsion ratio, which is

the experimental critical torque divided by T , that of an equivalent cylinder for which

L=l (3.1)

multiplied by cos? a. The curve plotted in Fig. 22 is based on Seide’s theory (Ref. 10) and his

points (Table 1 of Ref. 10). The corresponding values of the 3 typical shells computed in Section 1
of this report are also included and they are practically identical,

The comparison (of Table 7 and Fig. 22) shows good agreement with linear theory. The average
discrepancy is 15%, with a maximum of 25%. The results are slightly closer to theory than the explor-
atory tests of Ref. 19, though the ends here were clamped to a lesser degree,

The results verify the linear theories of Ref, 10 and Section 1 of this report, It should be ‘noted,
however, that both theories are for simple supports, whereas in the tests, the ends were at least partly
clamped and at the lower end the effect may be considerable.

The present tests seem to indicate that the design value of 75% of linear results given in Ref.

19 could be raised to 80% of the linear results. But more tests are required to determine the de-
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sign factor with more certainty, A further series of torsion tests is in preparation,
The experimentally determined number of waves agrees fairly well with the theoretical estimates

(éomputed from the approximate curve of Ref, 10),

COMBINED TORSION AND EXTERNAL PRESSURE

The results of the combined torsion and external pressure tests are given in Table 8,

Since the purpose ot these tests was to verify the theoretical interaction curves of Section 1,
and to provide data for empirical interaction curves, the measured pressures and maximum shear
stresses (actually torque were measured) were not compared with the theoretical values, but with the
mean of test results for pressure alone or torsion alone, In those cases where no appropriate experi-
mental results were available, the existing results were extrapolated, in accordance with Seide’s ap-
proximate formulae of Ref, 18 and 10, from the nearest experimental point.

The theoretical ana!,  showed that the interaction curves for large taper ratio and small o
medium taper ratio differ considerably. The shells of taper ratio 0.843 are therefore plotted separately
in Fig. 24, and compared with the interaction curve for shell 421 computed in Section 1; whereas
those of taper ratio 0,600 are ploited in Fig, 25, and are compared there with the semi-empirical for-
mula of Ref. 13. In Section 1 it was shown that for conical shell 416 (of medium taper ratio) the inter-
action curve can be approximated closely by this formula, Eq. (1.61).

The experimental results verify both interaction curves reasonably well, though with some scatter
(more pronounced with the steel specimens). The different curve for the large taper ratio shells is
emphasized by the results,

Hence, complete families of interaction curves for the entire range of conical shells of large

taper ratio would be of value.
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SECTION 4

BUCKLING OF CIRCULAR CONICAL SHELLS

UNDER UNIFORM AXIAL COMPRESSION

Josef Singer
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In Ref, 40 the axisymmetrical buckling of conical shells under axial compression was investigat.
ed, By setting Poisson’s ration equal to zero (with the justification that buckling loads are usually
not sensitive to Poisson’s ratio), the buckling load was found to be

1
P =P  _cos?a=1{2nEh*[3(1-v2)}cos®a o(4.1)

cr cyl

I In Ref. 41 the buckling under axial compression and external or internal uniform hydrostatic pres-
sure was analysed without prescribing axisymmetry. For the case of axial compression and internal
pressure the axisymmetrical buckling mode predominates, whereas for axial and external pressure the
more gencral mode with many lobes along the circumference is critical. Buckling loads for axial com-
pression only were not computed in this analysis on account of the very poor convergence of the stabili-
ty determinant for zero external (or internal) pressure. For this case, the approximation of Eq. (4.1) was
assumed to hold, since some spot calculations indicated it to be sufficiently accurate, Both Refs, 40

and 41 assume simple supports defined by the geometric (essential) boundary conditions

wcosa-—-usinag = 0

...(4.2)

v =20 at x=1,x,
representing bulkheads which are rigid in a plane perpendicular to the axis and very flexible in the axial
direction; whereas in this report the usual simple support conditions for conical shells are assumed,

which are defined (as for cylindrical shells) by the geometric boundary conditions

(4.3)

v =0 at x=1,x,

and represent bulkheads which ace rigid in the radial direction and very flexible in the direction of the
generators. (Both definitions imply the natural boundary conditions of free rotation of generators about

the edges, and freedom from restraint in the direction of the axis, or the generators, respectively).
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The method of Ref. 1 is therefore extended and applied to the analysis of buckling under uniform
axial compression, As mentioned in Section 1, this method of solution implies elastic restraints which
approximate the condition of v =0 very closely, and also the effect of the u restraint has been
found to be practically negligible in the case of external pressure and torsion, In Ref, 42, the effect of
axial constraint of the instability of circular cylindrical shells under uniform axial compression was
shown to be even smaller than in the cases of external pressure loading, and hence its effect can also
be neglected here.

The membrane stresses in the case of uniform axial compression are

o, = —(P/2nhaxsin acos a

Fo=0 vr(4.4)

Now, assuming again that for the buckling analysis the prebuckling stress is represented satis-

factorily by the membrane stresses, Eqgs. (4.4), the modified third stability equation, Eq. (1.9), becomes
(1/x? sin? q) H, (w) + x* (P/E)(1/2nh ax sinacosa) w

+ (l/x’) K‘ cos? q H;l [(x® w'")'"] =0 (4.5)

Substitution of the solution of Ref, 1 in Eq. (4.5), and evaluation by the Galerkin method as in Ref. 1,

yields after some manipulations

2C,8(nm = £C 1-D"" " 116, (1,m)

+ K cos? a L= x 2116, (aym 4 (D" T 116, (m) = 0 (4.6)

where G, (n,m) and G, (n,m) are again given by Egs. [64] to [66] of Ref, 1 (which are repeated for
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convenience in Appendix A)

m+n m-npn

G, (a,m) = K, (n) [ . ]

: P 2y eman) B @y tm-n) B

K, (0 [ ! ! ]

+ n -
ey imen) B @y-) +m-n) B *.7)
K, (@) = ag" (2y- 1) (4.8)
K, () = @y~1[G2~y)-n2p'] (4.9)
and

n = (P/E)(K'/2nh a sin a cos a) (4.10)

As in Ref. 1. N linear equations are obtained for an N term solution, and the lowest eigenvalue
n of the determinant of the coefficients of C_ yields the buckling load. However, it should be noted
that whereas in the case of buckling under external pressure (Ref, 1) n =1 is always the basic mode
(which consists of one half wave in the axial direction), here the value of n of the basic mode is de-
termined by the geometry of the shell, and is usually larger than unity, except for very short shells,

The practical criterion for the buckling load becomes therefore instead of Egs. (4.6)

N
2 C Smm) =
."h

T -0"" <" o116, @ym) + K* cos? a (-1

x:y— 1] G, (n, m)

+7 [(—l)m+ll x:y-l -116G, (n,m) = 0 a(4.10)
where n, is the number of half waves in the axial direction of the basic mode. The correct value of
n, is that which yields the minimum 7 in the one term solution of Eq. (4.11), An (N-nb+ 1) term

solution then yields, as before, (N —n, + 1) linear equations, and the buckling load is found from the
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(N-n, +1) th order determinant of the coefficients of c¢_. It should be remembered, that as in the
case of external pressure, the integral value of t (the number of circumferential waves) which yields
the minimum buckling load must be used in the calculations,

The critical load was calculated for a typical shell, Shell (a) of Fig. 2, by 1, 2, 3 and 4 term
solutions and compared with the approximate axisymmetric solution of Eq. (4.1). The results are

tabulated in Table 9,

T ABLE 9

CRITICAL LOAD FOR TYPICAL CONICAL SHELL UNDER UNIFORM AXIAL COMPRESSION

Material : Steel E = 30 x 108 psi, ve 0.3
Typical Taper (P_/E) x 103 (P_/E)
ao x2 , P /}l cr A . cr .
Shell Ratio av lterm | 2 term | 3term | 4 term | AXisymmetric
(a) 30° 1.50 0.333 831 28.76 | 28.53 | 28.33 | 28.25 28.52

The asymmetrical buckling load is indeed very slightly below the axisymmetric one in this
example,

The instability behaviour of thin conical shells, under axial compression, within the bounds of
linear theory, is similar to that of cylindrical shells, ‘The disagreement of the predictions of linear
theory with experimental results is also similar (see Refs, 19 and 43). Hence the linear analysis has

practical value only in cases of combined loading.
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AP P ENDI X A

DEFINITIONS OF FUNCTIONS G,, G, AND G,

The general expressions of the G function are

G‘(n,m) = F‘(n) [ 2m +n ¥ m-n —
4(y-1) +(m+n)l§z 4(y—1)7+(m-n) B
+F_ () [ 1 - L
y 4-()4--1)z +(m+n)2ﬁ-i Ay ~ 1)T+(m--n)zﬁ2
G.(n,m) = F.(n) [ S 2 2 + -t 2z a2
4y* + (m +n) B 4y* + (m-n) B
+F4(")[ 1 FRR ) - 1 7 %
4y* + (m +n0) B 4y* + (m-n) B
G.(n,m) = F'(n) { mtn + - m-n

@y+1) +(men) B @y+D) wm-n) B

+F, () [ 1 - !

2y + l)’ +(m + n)!ﬁ1 2y + lﬁ (m - n)z f)‘l

where

F‘(n) = 4nB* [ -3y2 +2y)--n2ﬂl (y-1] -(*/sin?a) (y - 1}

F,() = 2(y-D {(y* =4y’ +4%) - 28" (6y* =12y + ) +n*8"]

- 2(t*/sin?a) [(y* -2y + 2) - nzﬁz] + (t*/sin*a)}

F,m) = [2ynf" /(" + V)l Lsin? a [(=y* & 2y% = D-02 " 2G241) 40 g* (= 1))

2 [ 42y =D =n? B 2=y + Dant B

+14/sin? @) [(23% < 1) = n? [32 1

]

]

]

]

]

]

(A1)

(A2)

(A3)

(A4

(A'5)

(A 6)
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U Ve = sintal(y? =D —n2B 4 (=y® eyt 4y =) + 04 (64 +4y* +6)
—pt B a(oyr ) 4 n®B)
—4g? sin’a[(y‘-y‘—y“+1)—n2ﬁ’(—y‘+10y2_1)+n‘3‘(-y1_1)_n-p']
At [(6y* +4y? +6) ~ u*B 432 + 1) + n*B (O]

—4(t*/sin? O [(y2 + 1) - nzﬁzl

+ (¢ /sin* qa) (AT
F‘ (n) = [2y/(U‘ + Vz)] {sin?a ((y* - 3y* + 3yt - ya)—nzﬁz (—4y'+3y‘+2y’—l)

+n* B‘ (6y* +83y* +3)—n* B. (-4y* -3) +n"* B.]

_20 [ —y) —n? B (—yt 4 8y2 = D ant B -y —nt 6]

+(t4/sin? @) [(y* - y*) - n? /3z (6y* —=1) +n* B‘]I (A 8)
~F, () =n ;82 [(2y+1)/2] (A9)

and
(A 10)

F, @ = [@y+1D/2]1[6" +y) -0’ 871-2(t/sin? a) |



FIG.1 NOTATION

FIG. 2 DIMENSIONS OF TYPICAL
CONICAL SHELLS
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FIG. 3 INTERACTION CURVES FOR TRUNCATED CONICAL SHELLS UNDER COMBINED

TORSION AND EXTERNAL HYDROSTATIC PRESSURE



Fig. 4. Test Setup for Combined Torsion and External Pressure Loading.
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Fig. 6. Device for Measurement of

Out-of-Roundness.

Fig. 9. Typical Specimens - Stes

Typical Specimens - Alcl




Fig. 11. Typical Buckie Pattern in Fully Buckled State,
Resulting from External Pressure Loading (seen
from obove) — Steel Specimen 311/10.

Fig. 12. Typical Buckle Pattern ot Plastic Collapse,
Resulting from External Pressure Loading.
Same Shell as in Fig. 11 = 311/10.

Fig. 13. Typicol Buckie Pottern in Fully Buckled State,
Resulting from External Pressure Looding (seen
from above) - Alclad Specimen 421/5,

Fig. 14. Typical Buckle Patrern at Plastic Collapse, Resulting
from External Pressure Loading (seen from above).
Same Shell as in Fig. 13 = 421/8.
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Fig. 19. Typical Buckle Pattern for Conical Shell of Fig. 20. Typical Buckle Pattern for Conical Shel! of

Large Taper Ratio in Torsion (Plastic De- Small Taper Ratio (Plastic Deformation Re-
formation Remaining After Removal from maining After Removal from Test Rig) ~
Test Rig) ~ Alclad, Specimen 321/6. Stee! Specimen 417/6.

Fig. 23. Typical Buckle Pattern for Conical Shell Under
Combined Torsion and Externa! Pressure (Plas.
tic Deformation Remaining After Removal from
Test Rig) - Alclad, Specimen 421/9,
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conical shells of small and medium taper ratio, the interaction curves may be ap-
proximated by the semi-empirical curve of Crate, Batdort and Baab for cylindrical
shells, but for large taper ratio different curves are obtained.

The results of a continuation of an experimental program on the instability of
thin truncated conical shells under uniform external pressure, carried out at the
Department of Aeronautical Engineering, ate presented and discussed. The tests
of 33 steel, Alclad, and aluminum alloy conical shells of varying geometries are
described, and the results are compared and correlated with other experimental
investigations and with theory. The test resuits reverify the theories of Singer
and Seide. The buckling and postbuckling behaviour and the effect of initial out- -
of-roundness are discussed.

The results of another experimental program on the instability of thin truncated
conical shells in torsion and under the combined loading of external pressure and
torsion are given, and compared with the theories of Section 1. Good agreement
was obtained between theory and experiments.

The method of analysis of Section 1 is adapted to analyse the asymmetric buck-
ling of thin conical shells under uniform axial compression. A linear theory is
used and typical cases are computed and compared with an axisymmetric analysis.
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